

2004 U. S. NATIONAL CHEMISTRY OLYMPIAD

NATIONAL EXAM Part I

Prepared by the American Chemical Society Olympiad Examinations Task Force

OLYMPIAD EXAMINATIONS TASK FORCE

Arden P. Zipp, State University of New York, Cortland Chair

Sherry Berman-Robinson, Consolidated High School, IL

William Bond, Snohomish High School, WA

Peter E. Demmin (retired), Amherst Central High School, NY

Marian Dewane, Centennial High School, ID

Dianne Earle, Boiling Springs High School, SC

Michael Hampton, University of Central Florida, FL

David W. Hostage, Taft School, CT

Alice Johnsen, Bellaire High School, TX

Adele Mouakad, St. John's School, PR

Ronald O. Ragsdale, University of Utah, UT

Jacqueline Simms, Sandalwood Sr. High School, FL

DIRECTIONS TO THE EXAMINER-PART I

Part I of this test is designed to be taken with a Scantron® answer sheet on which the student records his or her responses. Only this Scantron sheet is graded for a score on **Part I**. Testing materials, scratch paper, and the Scantron sheet should be made available to the student *only* during the examination period. All testing materials including scratch paper should be turned in and kept secure until April 19, 2004, after which tests can be returned to students and their teachers for further study.

Allow time for the student to read the directions, ask questions, and fill in the requested information on the Scantron sheet. The answer sheet must be completed using a pencil, not pen. When the student has completed **Part I**, or after **one hour and thirty minutes** has elapsed, the student must turn in the Scantron sheet, **Part I** of the testing materials, and all scratch paper.

There are three parts to the National Olympiad Examination. You have the option of administering the three parts in any order, and you are free to schedule rest-breaks between parts.

Part I 60 questions single-answer multiple-choice 1 hour, 30 minutes
Part II 8 questions problem-solving, explanations 1 hour, 45 minutes
Part III 2 lab problems laboratory practical 1 hour, 30 minutes

A periodic table and other useful information are provided on page 2 for student reference. Students should be permitted to use non-programmable calculators.

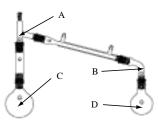
DIRECTIONS TO THE EXAMINEE-PART I

DO NOT TURN THE PAGE UNTIL DIRECTED TO DO SO. Answers to questions in Part I must be entered on a Scantron answer sheet to be scored. Be sure to write your name on the answer sheet; an ID number is already entered for you. Make a record of this ID number because you will use the same number on both Parts II and III. Each item in Part I consists of a question or an incomplete statement that is followed by four possible choices. Select the single choice that best answers the question or completes the statement. Then use a pencil to blacken the space on your answer sheet next to the same letter as your choice. You may write on the examination, but the test booklet will not be used for grading. Scores are based on the number of correct responses. When you complete Part I (or at the end of one hour and 30 minutes), you must turn in all testing materials, scratch paper, and your Scantron answer sheet. Do not forget to turn in your U.S. citizenship statement before leaving the testing site today.

ABBREVIATIONS AND SYMBOLS								
ampere	A	Faraday constant	F	molal	m			
atmosphere	atm	formula molar mass	M	molar	M			
atomic mass unit	u	free energy	G	molar mass	M			
atomic molar mass	\boldsymbol{A}	frequency	ν	mole	mol			
Avogadro constant	$N_{ m A}$	gas constant	R	Planck's constant	h			
Celsius temperature	$^{\circ}\mathrm{C}$	gram	g	pressure	P			
centi- prefix	c	heat capacity	C_p	rate constant	k			
coulomb	C	hour	h	retention factor	$R_{ m f}$			
electromotive force	\boldsymbol{E}	joule	J	second	S			
energy of activation	$E_{ m a}$	kelvin	K	temperature, K	T			
enthalpy	H	kilo- prefix	k	time	t			
entropy	S	liter	L	volt	V			
equilibrium constant	K	milli– prefix	m					

CONSTANTS						
CONSTANTS $R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $R = 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $1 F = 96,500 \text{ C} \cdot \text{mol}^{-1}$ $1 F = 96,500 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}$ $N_{\text{A}} = 6.022 \times 10^{23} \text{ mol}^{-1}$ $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$ $0 \text{ °C} = 273.15 \text{ K}$ $1 \text{ atm} = 760 \text{ mmHg}$						
$N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}$ 0 °C = 273.15 K						

EQUATIONS
$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad \qquad \ln K = \left(\frac{-\Delta H}{R}\right) \left(\frac{1}{T}\right) + \text{constant} \qquad \qquad \ln \left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$


1			\mathbf{P}	ERI	\mathbf{OD}	IC T	AB	LE	OF	THI	EEI	LEN	1EN	TS			18
1A	-															,	8A
1																	2
H 1.008	2											13	14	15	16	17	He 4.003
	2A	Ī									•	3A	4A	5A	6A	7A	
3 Li	4 D.											5 D	6	7	8	9 E	10 No.
6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12										ľ	13	14	15	16	17	18
Na	Mg 24.31	3	4	5	6	7	8	9	10	11	12	Al	Si	P	$\mathbf{S}_{\mathbf{s}}$	Cl	Ar
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	Kr 83.80
39.10	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd		Cd	In	Sn	Sb	Te	<i>J</i> 3	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	Ag 107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5 104	180.9 105	183.8	186.2	190.2 108	192.2 109	195.1 110	197.0 111	200.6	204.4	207.2	209.0	(209)	(210)	(222)
Fr	oo Ra	Ac	Rf	Db		Bh	Hs	109 Mt	110	111	112		114				
(223)	(226)	(227)	(261)	(262)	Sg (263)	(262)	(265)	(266)	(269)	(272)	(277)		(2??)				
												_					
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		Ce 140.1	Pr 140.9	Nd	Pm	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm	Yb	Lu 175.0		
		90	91	144.2 92	93	94	95	96	97	98	99	100	168.9	173.0 102	103	┨	
		70 Th	Pa	1 92 U	93 Np	Pu Pu	95 Am	Cm	9/ Bk	Cf	99 Es	Fm	101 Md	No	Lr		
		232.0		238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)		

DIRECTIONS

- When you have selected your answer to each question, blacken the corresponding space on the answer sheet using a soft, #2 pencil. Make a heavy, full mark, but no stray marks. If you decide to change an answer, erase the unwanted mark very carefully.
- There is only one correct answer to each question. Any questions for which more than one response has been blackened will not be counted.
- Your score is based solely on the number of questions you answer correctly. It is to your advantage to answer every question.
 - 1. Which element is obtained commercially from seawater?
 - (A) bromine
- (B) gold

(C) iron

- (D) oxygen
- 2. Which solution can serve as both reactant and indicator when it is used in redox titrations?
 - (A) $FeNH_4(SO_4)_2$
- (B) KMnO₄
- (C) $H_2C_2O_4$
- **(D)** $Na_2S_2O_3$
- **3.** What is formed when a solution of NH₄NO₂ is heated gently?
 - (A) N_2 and H_2O
- **(B)** N_2O and H_2O
- (C) NO and H₂
- **(D)** N_2 , H_2 and O_2
- **4.** Which method should be used to extinguish burning magnesium metal?
 - (A) Blanket it with CO₂
- (B) Blow on it.
- (C) Dump sand on it.
- (**D**) Pour water on it.
- **5.** Which letter indicates where a thermometer should be placed to determine the boiling point of a distillate?

- (**A**) A
- **(B)** B
- (**C**) C
- **(D)** D
- **6.** A 50 mL sample of gas is collected over water. What will be the effect on the calculated molar mass of the gas if the effect of the water vapor is ignored? It will be
 - (A) high because of the mass of water in the collection flask.
 - **(B)** high because of omitting the vapor pressure of the water in the calculation.
 - (C) low because of the mass of water in the collection flask.
 - (**D**) low because of omitting the vapor pressure of the water in the calculation.

7. A 1.871 gram sample of an unknown metallic carbonate is decomposed by heating to form the metallic oxide and 0.656 g of carbon dioxide according to the equation

$$MCO_3(s) \rightarrow MO(s) + CO_2(g)$$

What is the metal?

- (**A**) Ca
- **(B)** Mn
- **(C)** Ni
- **(D)** Zn
- 8. What is the coefficient for OH⁻ after the equation $_Br_2 + _OH^- \rightarrow _Br^- + _BrO_3^- + _H_2O$
 - is balanced with the smallest integer coefficients?
 - **(A)** 3
- **(B)** 6
- **(C)** 12
- **(D)** 18
- **9.** An ionic compound contains 29.08% sodium, 40.56% sulfur and 30.36% oxygen by mass. What is the formula of the sulfur-containing anion in the compound?
 - (A) $S_2O_3^{2-}$
- **(B)** $S_2O_4^{2-}$
- (C) $S_2O_5^{2-}$
- **(D)** $S_2O_6^2$
- **10.** A solution is prepared containing a 2:1 mol ratio of dibromoethane (C₂H₄Br₂) and dibromopropane (C₃H₆Br₂). What is the total

	Vapor pressu	are (mmHg)
d	$C_2H_4Br_2$	173
	$C_3H_6Br_2$	127

vapor pressure over the solution assuming ideal behavior?

- (A) 300 mmHg
- (**B**) 158 mmHg
- (C) 150 mmHg
- **(D)** 142 mmHg
- **11.** A solution of magnesium chloride that is 5.10% magnesium by mass has a density 1.17 g/mL. How many moles of Cl⁻ ions are in 300. mL of the solution?
 - **(A)** 0.368
- **(B)** 0.627
- **(C)** 0.737
- **(D)** 1.47
- 12. Which aqueous solution has a freezing point closest to that of $0.30 \text{ M C}_{12}\text{H}_{22}\text{O}_{11}$?
 - (**A**) 0.075 M AlCl₃
- **(B)** 0.15M CuCl₂
- (C) 0.30 M NaCl
- **(D)** $0.60 \text{ M C}_6\text{H}_{12}\text{O}_6$

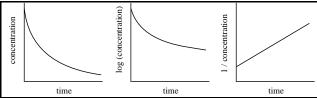
- **13.** An unknown gas is placed in a sealed container with a fixed volume. Which of the characteristics listed change(s) when the container is heated from 25 °C to 250 °C?
- I The density of the gas
- II The average kinetic energy of the molecules
- III The mean free path between molecular collisions
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- 14. Which gas has the same density at 546 °C and 1.50 atm as that of O₂ gas at STP?
 - (A) N_2
- **(B)** NH₃
- (C) SO₂
- (\mathbf{D}) SO₃
- 15. Which plot involving vapor pressure (VP) and absolute temperature results in a straight line?
 - (A) VP vs T
- (B) VP vs T⁻¹
- (C) ln VP vs T
- **(D)** ln VP vs T⁻¹
- **16.** For a substance with the values of ΔH_{vap} and ΔS_{vap} given below, what is its normal boiling point in °C' $(\Delta H_{\text{vap}} = 59.0 \text{ kJ} \cdot \text{mol}^{-1}; \Delta S_{\text{vap}} = 93.65 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$
 - (A) 357
- **(B)** 630
- (C) 1314
- **(D)** 1587
- 17. What is the order of the boiling points (from lowest to highest) for the hydrogen halides?
 - (A) HF < HCl < HBr < HI
- **(B)** HI < HBr < HCl < HF
- (C) HCl < HF < HBr < HI (D) HCl < HBr < HI < HF
- **18.** Of the three types of cubic lattices, which have the highest and lowest densities for the same atoms?

Highest

Lowest

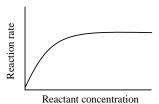
- (A) simple cubic
- body-centered cubic
- **(B)** face-centered cubic
- simple cubic
- (C) body-centered cubic
- face-centered cubic
- **D)** face-centered cubic
- body-centered cubic
- 19. For which reaction is ΔH (enthalpy change) most nearly equal to ΔE (internal energy change)?
 - (A) $H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$
 - **(B)** $Cl_2(g) + F_2(g) \rightarrow 2ClF(g)$
 - (C) $H_2O(1) \rightarrow H_2O(g)$
 - **(D)** $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$

- **20.** Which is the best description of the relationship between the absolute entropies, S°, of solid water at 100 K and at
 - (A) S_{200K}° is smaller because entropy decreases as temperature increases.
 - **(B)** S_{200K}° is smaller because the surroundings are more disordered at higher temperatures.
 - (C) $S_{100K}^{\circ} = S_{200K}^{\circ} = \text{because water is in the solid phase}$ at both temperatures.
 - (**D**) S_{200K}° is larger because the vibration of the molecules increases as temperature increases.
- 21. For the reaction, $CH_4 + Cl_2$ \rightarrow CH₃Cl + HCl which expression gives ΔH ?


Bond dissociation energies	kJ·mol ⁻¹
C-H	413
C-Cl	328
Cl-Cl	242
H-Cl	431

- (A) $\Delta H = (413 + 328) (242 + 431)$
- **(B)** $\Delta H = (413 328) (242 431)$
- (C) $\Delta H = (413 242) (328 431)$
- **(D)** $\Delta H = (413 + 242) (328 + 431)$
- 22. Which phase change for water has positive values for both ΔH° and ΔG° ?
 - (A) (1) \rightarrow (s) at 250 K
- **(B)** (1) \rightarrow (s) at 350 K
- (C) (l) \rightarrow (g) at 350 K
- **(D)** (1) \rightarrow (g) at 450 K
- 23. When solid CuSO₄ dissolves in water to make a 1M solution, the temperature of the system increases. When solid NH₄NO₃ dissolves in water to make a 1 M solution, the temperature of the system decreases. Which statement(s) must be correct for these dissolving
 - I ΔH° values for both processes have the same sign. II ΔG° values for both processes have the same sign.
 - (A) I only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II
- **24.** Which set of relationships could apply to the same electrochemical cell?
 - (A) $\Delta G^{\circ} > 0$; $E^{\circ} = 0$
- **(B)** $\Delta G^{\circ} < 0; E^{\circ} = 0$
- (C) $\Delta G^{\circ} > 0; E^{\circ} > 0$
- **(D)** $\Delta G^{\circ} < 0; E^{\circ} > 0$
- 25. The rate constant for a reaction is affected by which factors?
- I increase in temperature II concentration of the reactants
- III presence of a catalyst
- (A) I and II only
- (B) I and III only
- (C) II and III only
- (D) I, II and III

26. The rate data given were obtained for the reaction, $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ What is the rate law for this reaction?


NO pressure (atm)	H ₂ pressure (atm)	Rate (atm•sec ⁻¹)
0.375	0.500	6.43×10^{-4}
0.375	0.250	3.15×10^{-4}
0.188	0.500	1.56×10^{-4}

- (A) Rate = $k P_{NO}$
- **(B)** Rate = $k P_{NO}^2$
- (C) Rate = $k P_{NO} P_{H_2}^2$
- **(D)** Rate = $k P_{NO}^2 P_{H_2}$
- **27.** What is the order of a reaction that produces the graphs shown?

- (A) zero order
- (B) first order
- (C) second order
- (D) some other order
- **28.** What is the rate law for the hypothetical reaction with the mechanism shown?

- **(A)** Rate = $k[A]^2$
- **(B)** Rate = $[B]^2$
- (C) Rate = k[A][B]
- **(D)** Rate = $k[A]^2[B]$
- **29.** According to the Arrhenius equation: $k = Ae^{-Ea/RT}$, a plot of ln k against 1/T yields
 - (A) E_a as the slope and A as the intercept
 - **(B)** E_a/R as the slope and A as the intercept
 - (C) E_a/R as the slope and $\ln A$ as the intercept
 - (**D**) -E_a/R as the slope and ln A as the intercept
- **30.** Curves with the shape shown are often observed for reactions involving catalysts. The level portion of the curve is best attributed to the fact that

- (A) product is no longer being formed.
- (B) the reaction has reached equilibrium.
- (C) all the catalytic sites are occupied.
- (**D**) all the reactant has been consumed.

31. $H_2S(aq) \rightleftharpoons H^+(aq) + HS^-(aq)$ $K = 9.5 \times 10^{-8}$ $HS^-(aq) \rightleftharpoons H^+(aq) + S^{2-}(aq)$ $K = 1.0 \times 10^{-19}$ Given the equilibrium constants provided, what is the equilibrium constant for the reaction;

$$S^{2-}(aq) + 2H^{+}(aq) \rightleftharpoons H_{2}S(aq)$$
 $K = ?$

- **(A)** 9.5×10^{-27}
- **(B)** 9.7×10^{-14}
- (C) 9.5×10^{11}
- **(D)** 1.0×10^{26}
- **32.** Calculate the hydronium ion concentration in 50.0 mL of 0.10 M NaH₂AsO₄.

$$(K_1 = 6.0 \times 10^{-3}, K_2 = 1.1 \times 10^{-7} K_3 = 3.0 \times 10^{-12})$$

- **(A)** 2.4×10^{-2}
- **(B)** 1.6×10^{-3}
- (C) 1.0×10^{-4}
- **(D)** 2.5×10^{-5}
- **33.** When the acids; HClO₃, H₃BO₃, H₃PO₄, are arranged in order of increasing strength, which order is correct?
 - (A) $H_3BO_3 < H_3PO_4 < HClO_3$
 - **(B)** $HClO_3 < H_3BO_3 < H_3PO_4$
 - (C) $H_3PO_4 < HClO_3 < H_3BO_3$
 - **(D)** $H_3BO_3 < HClO_3 < H_3PO_4$
- **34.** A buffer solution results from mixing equal volumes of which solutions?

I 0.10 M HCl and 0.20 M NH₃
II 0.10 M HNO₂ and 0.10 M NaNO₂
III 0.20 M HCl and 0.10 M NaCl

- (A) II only
- (B) I and II only
- (C) I and III only
- (**D**) I, II and III
- **35.** A solution is 0.10 M in Ag⁺, Ca²⁺, Mg²⁺, and Al³⁺ ions. Which compound will precipitate at the lowest [PO₄³⁻] when a solution of Na₃PO₄ is added?

(**A**)
$$Ag_3PO_4$$
 ($K_{sp} = 1 \times 10^{-16}$)

- **(B)** $Ca_3(PO_4)_2 (K_{sp} = 1 \times 10^{33})$
- (C) $Mg_3(PO_4)_2 (K_{sp} = 1 \times 10^{-24})$
- **(D)** AlPO₄ ($K_{sp} = 1 \times 10^{-20}$)
- **36.** Which salt is significantly more soluble in a strong acid than in water?
 - (**A**) PbF₂
- **(B)** PbCl₂
- (C) $PbBr_2$
- **(D)** PbI₂
- **37.** What is the standard cell potential for the reaction,

$$2Cr(s) + 3Sn^{2+}(aq) \rightarrow 3Sn(s) + 2Cr^{3+}(aq)$$
 given the E° values shown?

$$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s) -0.744 \text{ V}$$

 $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s) -0.141 \text{ V}$

- (A) 0.945 V
- **(B)** 0.603 V
- (**C**) -0.603 V
- **(D)** -0.945 V

38.	How many el reaction for the	he oxidation	of ethan	ol to ac	cetic acid?	46.	Of the element energy?	ents giv	ven, which	ch has t	he lowe	st ioniz	ation
		C_2H_5OH	\rightarrow CH ₃	CH₃COOH			(A) N	(B)	P	(C)	S	(D)	Cl
	(A) 1	(B) 2	(C)	3	(D) 4								
39.	Which is the solution?	weakest oxid	lizing ag	ent in a	a 1 M aqueous	47.	How many its ground s	tate?					
			(D)	G 2+4			(A) 0	(B)	2	(C)	4	(D)	6
	$(\mathbf{A}) \mathbf{Ag}^{+}(\mathbf{aq})$			Cu ²⁺ (•	40	W/la: ala assas		4 1:1 1			(O+	±\9
	(C) $H^+(aq)$		(D)	Zn^{2+}	aq)	40.	Which spec			•	-	•	
40	The standard	notential for	the reac	tion			(A) ${}^{12}_{7}$ N	(B)	$^{18}_{8}O$	(C)	${}^{20}_{9}F$	(D)	$^{20}_{10}{ m Ne}$
40.	$Cl_2(g) + 2B_1$	$r^{-}(aq) \longrightarrow I$ s. What is the	$3r_2(1) +$	2Cl ⁻ (a	nq) onstant for this	49.	According to	own, w	hat are tl	he		::: c :	••
	(A) 1.6 × 10	-5	(B)	22			formal char the cyanate		ne O, C	and N	atoms, r	espectiv	ely, in
	(C) 6.1 × 10	4	(D)	3.8×	109		(A) 0, 0, 0			(B)	-1, 0, 0)	
							(C) -1, +1,				+1, 0,		
41.	When an aqu electrolyzed,					50			-£ A - :				
		O_2 and H^+ are produced at one electrode and H_2 and					The hybridi						
	OH⁻ are	formed at the	e other.				(D)	d^2sp^3					
		OH ⁻ are produ are formed at			ctrode and H ₂	51.	In which sp	ecies d	o the ato	ms NO	T lie in	a single	plane?
		K is formed at the other		lectrod	le and O ₂ and H ⁺		(A) BF ₃	(B)	PF ₃	(C)	ClF ₃	(D)	XeF ₄
	(D) Metallic elements	K is produce at F_2 is produ				52.	For which occur most	MCO	$g_3(s) \rightarrow 1$			(g)	
42.	A CuSO, soli	ution is electr	olyzed f	or 20	minutes with a		(A) BeCO	3		(B)	MgCO	3	
	current of 2.0 copper that co	ampere. Wh	at is the				(C) CaCO	3			BaCO ₃		
	(A) 0.20 g	(B) 0.40 g	(C)	0.79 g	g (D) 1.6 g	53.	The color o transitions	f Co(H ₂	$(20)_6^{2+}$ is	best att	ributed	to elect	ronic
43.					ly supports the		(A) between	en diffe	rent n lev	vels in	the meta	ıl.	
	suggestion th		ave wav	e prop	erties?		(B) between	en the m	netal's d	orbitals	·		
	(A) diffraction	on					(C) from the						
	(B) emission	n spectra					(D) during						
	(C) photoele	ectric effect					(D) during	TOTITZA	1011.				
	(D) deflection	on of cathode	rays by	a magi	net	54.	When the c CH ₂ O and C	CHO ₂ - a	are arran	ged in			
44.	Which quanti				number of		length, whi						
	angular node				(D)		(A) CH ₃ Ol		-	-			
	(A) n	(B) 1	(C)	m_l	(\mathbf{D}) \mathbf{m}_{s}		(B) CH ₂ O	$<$ CH $_3$ C	OH < CH	O_2^-			
45	W/h: ah alama	nt avhibita th	a granta	at m	har of oxidation		(C) CHO ₂	< CH	$_{3}OH < C$	H_2O			

(D) CH₂O < CHO₂⁻ < CH₃OH

45. Which element exhibits the greatest number of oxidation

(**C**) Cu

(D) As

states in its compounds?

(B) V

(A) Ca

55.	How many different trichlorobenzenes, $C_6H_3Cl_3$, can be formed?								
	(A)	1	(B)	2	(C)	3	(D)	4	
56.		at organic secondary			ed fro	om the mi	ld oxi	dation	
	(A)	acid			(B)	aldehyde	;		
	(C)	ether			(D)	ketone			
57.	The best	compound	d witl as a(h the form	ula, F	H ₂ NCH ₂ Cl	H ₂ CO	OH, is	
	(A)	amide			(B)	amino ac	id		
	(C)	fatty acid			(D)	nucleic a	cid		
58.	8. The reaction between which pair of reactants occurs the fastest for [OH ⁻] = 0.010 M?								
	(A)	CH ₃ CH ₂ C	CH ₂ C	$^{2}H_{2}Cl + Ol$	Η-				
	(B)	$(CH_3)_3CC$	Cl +	OH-					
	(C)	CH ₃ CH ₂ C	CH_2C	$H_2Br + Ol$	Н-				
	(D)	$(CH_3)_3CH$	3r +	OH-					
59.		at is the mation of CH					om th	e	
	(A)	CH ₃ CHC	ICH ₃		(B)	CH ₃ CH ₂ C	CH ₂ C	1	
	(C)	CH ₃ CHC	CICH ₂	Cl	(D)	CH ₂ ClCI	H=CH	I_2	
60.		and oils a				combinatio	on of	fatty	
	(A)	cholester	ol		(B)	glucose			
	(C)	glycerol			(D)	phenol			
			EN	D OF	TES	ST			

National Olympiad 2004 Part 1 KEY

Number	Answer	Number	Answer
1.	\mathbf{A}	31.	D
2.	В	32.	D
3.	\mathbf{A}	33.	\mathbf{A}
4.	\mathbf{C}	34.	${f B}$
5.	\mathbf{A}	35.	D
6.	D	36.	\mathbf{A}
7.	D	37.	В
8.	В	38.	D
9.	\mathbf{A}	39.	D
10.	В	40.	D
11.	D	41.	\mathbf{A}
12.	\mathbf{A}	42.	\mathbf{C}
13.	В	43.	\mathbf{A}
14.	\mathbf{C}	44.	В
15.	D	45.	A B B C C
16.	${f A}$	46.	\mathbf{C}
17.	D	47.	\mathbf{C}
18.	В	48.	\mathbf{A}
19.	В	49.	D C
20.	D	50.	\mathbf{C}
21.	D	51.	В
22.	C	52.	${f A}$
23.	В	53.	В
24.	D	54.	D
25.	В	55.	\mathbf{C}
26.	D	56.	D
27.	$\overline{\mathbf{C}}$	57.	\mathbf{B}
28.	D	58.	$\overline{\mathbf{D}}$
29.	$\overline{\mathbf{D}}$	59.	Ā
30.	$\overline{\mathbf{C}}$	60.	$\overline{\mathbf{C}}$
			Ç